

INERTIAL NAVIGATION SYSTEM (INS)

Revision 0.0.1.41 (May 2023)

Firmware Version = 41

Brief:

This device is a multi-functional sensor that merges two main components:

- An Inertial Measurement Unit (IMU) that has a 3-axis accelerometer and a 3-axis gyroscope. The
accelerometer measures changes in velocity along three perpendicular axes (x, y, and z), and the
gyroscope detects changes in rotational position (pitch, roll, and yaw) along the same axes.

- A Global Navigation Satellite System (GNSS) receiver, which communicates with satellites to determine
the sensor's location on Earth.

What makes this sensor unique is its onboard sensor fusion algorithm. This sophisticated software combines the
different measurements from the IMU and the GNSS to produce very accurate and fast updates on the sensor's
position, orientation, and movement.

The sensor fusion algorithm also corrects for biases (systematic errors) in the accelerometer and gyroscope
measurements, ensuring even more accurate data.

Moreover, the device can calculate the velocities in the sensor's (or the vehicle's) own frame of reference, which
can be extremely useful for understanding and controlling its movement.

Purpose:

The main objective with this sensor is to put cutting-edge, high-performance sensor fusion algorithms into the
hands of motorsport integrators and motorsport engineers without having to deal with sensor calibration,
embedded systems, or understanding the sensitivity of MEMS IMU’s, specifically.

Functional Overview:

The sensor fusion algorithm that runs on this sensor is an Extended Kalman Filter (EKF). An EKF is a filter that
combines data from multiple sensors and provides a best guess estimate of the position, orientation, and velocity
of the vehicle.

There are issues that become apparent when trying to use a GNSS by itself, or an IMU by itself to determine the
position and orientation of a vehicle. We will highlight the issues of each, below:

GNSS / GPS:

The Global Navigation Satellite System uses satellites in low orbit of the planet with known positions to triangulate
the position of the GNSS receiver. GNSS receivers can produce global position updates with high absolute accuracy
(within the context of the size of the planet). The issue is that they cannot generate high-rate position updates due
to how the satellite signals are transmitted from the satellite to the planet surface. There are also many
environmental scenarios that can cause position errors or even loss of position altogether.

IMU:

Inertial Measurement Units use small force measurement sensors to measure acceleration and angular velocity.
IMU’s can produce relative movement measurements at a very high rate. The issue is that the measurements are
subject to propagation drift very quickly.

GNSS + IMU:

We now know that GNSS receivers will provide high absolute accuracy but have slow update rates. We also know
that IMU’s will have very low absolute accuracy over time but have a very high update rate. An EKF will combine
these two and have them complement each other to provide high absolute accuracy and a high update rate.

GENERAL USAGE / INSTALLATION:

COORDINATE FRAME:

This sensor uses a “right hand rule” coordinate frame. You must place the sensor with the X axis pointing forward.
This will place the sensor in a Forward Right Down frame (FRD). This means that the sensor will produce data
where:

Axis Direction Gyroscope Axis Acceleration Axis

X+ Forward Roll Rate Longitudinal Accel

Y+ Right Pitch Rate Lateral Accel

Z+ Down Yaw Rate Vertical Accel

GENERAL INSTALLATION NOTES:

● It is imperative that the INS must not be installed on a CAN bus with active traffic on the 0x006 CAN ID.

● It is of the utmost importance to isolate the sensor from chassis vibrations to the extent that it does not
introduce error into the orientation measurements.

○ An example of poor placement would be placing the sensor in the middle of a floor pan without
any structural bracing beneath it. The floor pan, in this case, is likely to act like a spring causing
the accelerometer to saturate and produce poor results. A more logical place to put the sensor is
mounted on a rigid part of the chassis (I.E., the roll cage, or mounted to a structural member that
is rigid).

● It is highly recommended to keep the sensor away from sources of excess heat. While the internal
accelerometer and gyroscope are calibrated over a broad temperature range (-40 to 80 C), it will help the
stability of the estimates if the temperature is relatively constant around 25-30 C.

● It is highly recommended to specify at the time of order the 3D translation of the GNSS antenna to the
sensor body. This will help make the data more accurate. By default, the sensor is programmed to have

the GNSS antenna mounted 1 meter above the sensor body with no lateral translation (X / Y). This 3D
translation is now configurable via CAN as of firmware version 8 (See CAN Definitions (Input)).

● To produce accurate measurements the sensor will need an initialization period after start-up to generate
accurate yaw estimation and body frame velocity measurements. This generally will occur after a short
period of driving (in practice, 1 warm up lap is generally adequate). If faster convergence time is required,
the user can disable the AHRS system (See CAN Definitions (Input)).

● If only forward velocity is the desired output from the sensor, this does not require initialization as it is
calculated from the magnitude of the X and Y velocity measurements.

● If the user wishes to have the output data in a different reference frame, a hardcoded transformation
can be written in firmware specific to the customer's needs. Please contact us for more information.

GENERAL USAGE NOTES:

There are two LEDs on the outside of the sensor that can help indicate the status of the sensor. If the sensor is

powered, the following states will indicate how the sensor is operating.

The System A LED is defined by the following states:

- Red indicates that the system is online and publishing data via CAN.
- Blue indicates that the system has an adequate GNSS fix and that the system is initializing.
- Green indicates that the system has a good GNSS fix and that the Kalman filter has converged on a valid

solution and that the sensor is publishing accurate pose estimates and slip angle.

If the sensor is powered and there is no illumination, this will require support from Obsidian Group. Please
email for support sander@obsidianeng.com.

The System B LED is defined by the following states:

- Blue indicates that the sensor has adequate power and that the on board electronics are OK.
- Purple indicates that there is an issue with the CAN bus that the sensor is connected to.

o Incorrect CAN termination resistance

o Incorrect CAN wiring
o Incorrect CAN baud rate

- Cyan flashing at 1hz corresponds to the 1PPS signal from the internal GNSS receiver.

If the sensor is powered and there is no illumination, this will require support from Obsidian Group. Please
email for support sander@obsidianeng.com.

INS SPECIFICATIONS:

Note: All sensors have individual thermal calibration between -40 - 80 C

Note: All sensors have internal calibrations for bias, scale factor, and misalignment

Accelerometer:

Range +/- 16 G

Bias Stability < 0.04 mg

Linearity < 0.5 % FS

Bandwidth 260 Hz

Cross Axis Sensitivity +/- 0.05 deg

Gyroscope:

Range 2000 deg/sec

Bias Stability < 10 deg / hour

Linearity < 0.1 % FS

Bandwidth 256 Hz

Cross Axis Sensitivity < 0.05 deg

GNSS Receiver:

Type 72 Channel, Single Frequency

Constellations GPS, GLONASS, Galileo, BeiDou, QZSS, SBAS

TTF (Cold / Hot (typical)) < 60 Seconds / 1 Second

ITAR Limit Altitude 50,000 m and Speed of 500 m/s

Sensor Fusion Calculation:

Rate 400 Hz (Position, Velocity, Orientation, Acceleration,
Gyroscope)
100 Hz (MoTeC GPS Simulation 0x680, 0x681, 0x682,
0x683)
50 Hz (Emtron Pty Ltd GPS Simulation 0x28A, 0x28B,
0x28C)

CAN 1Mbps (Default) (500kbps and 250kbps optional)

Electrical:

Input Voltage 5V (Min) / 24V (Max)

Power Consumption 75 mA @ 12V (0.84W)

Electrical Pinout:

Mating Connector Deutsch Autosport ASL606-05SN

Pin 1 Ground

Pin 2 n/c

Pin 3 Power

Pin 4 CAN L

Pin 5 CAN H

Mechanical:

Dimensions (L x W x H) 76 x 70 x 33 (mm)

Material 6061 T6 Anodized Aluminum

Weight

CHANNEL DESCRIPTIONS:

This sensor produces data in 10 different categories:

- Orientation
- Acceleration (Accelerometer)
- Body Frame Acceleration (Gravity Compensated Accelerometer)
- Angular Velocities (Gyroscope)
- Body Frame Velocities
- Global Position
- Slip Angle
- Global Time (UTC)
- Race Time and Race Distance
- State Enumerations

ORIENTATION:

Orientation refers to the angles of rotation about the three principal axes of the system. The three angles are
typically referred to as roll, pitch, and yaw:

Roll (rotation around the X-axis): This is the tilt to the left or right (wing up or down in the case of an aircraft).

Pitch (rotation around the Y-axis): This is the tilt forwards or backwards (nose up or down in the case of an
aircraft).

Yaw (rotation around the Z-axis): This is the rotation to the left or right (nose left or right in the case of an aircraft),
analogous to turning in a circle left or right.

These angles are with respect to an Earth-fixed frame. This essentially means that a roll and pitch measurement of
0 degrees will indicate that the sensor is exactly perpendicular to gravity, while a yaw measurement of 0 means
that the sensor is pointing exactly north.

RAW ACCELERATION:

Accelerometers measure the rate of change of velocity along the three axes of the body frame (x, y, and z). These
measurements are made in response to both the movement of the vehicle and the force of gravity.

Raw acceleration measurements from the INS include both these components:

- The actual acceleration of the vehicle as a result of propulsion, braking, or changes in direction.
- The acceleration as a result of gravity, which always points downwards to the center of the Earth.

Raw acceleration is, in practice, generally not very useful for vehicle dynamics evaluation. Raw acceleration values
are only provided to the user to provide a gravity reference if the user requires.

BODY FRAME ACCELERATION:

Body frame acceleration measurements represent the actual movement that the vehicle is experiencing
independent of orientation or gravity.

To isolate the acceleration caused by the vehicle's movement, the gravity component needs to be removed from
the raw acceleration measurements. The gravity component is not simply a constant 9.81 m/s² (1G) to be
subtracted, because the direction of the gravity vector changes as the vehicle changes its pitch, roll, and yaw.

This correction is necessary because you typically want to know how the vehicle is moving through space, not how
it is being affected by gravity. The gravity component is essentially a distraction that needs to be removed.

These measurements are, in practice, most useful for vehicle dynamics evaluation.

ANGULAR VELOCITY:

The angular velocity measurements represent the velocity at which the sensor is rotating around the three axes of

the inertial frame / body frame.

Angular velocity is a vector quantity, meaning it has both magnitude (speed of rotation) and direction (axis of

rotation). It is generally represented along three perpendicular axes – roll (X-axis), pitch (Y-axis), and yaw (Z-axis),

corresponding to the three dimensions of space:

Gyro X or Roll Rate (X-axis): The angular velocity around the X-axis is the rate of change of the roll angle, which

describes the vehicle's motion of tilting side to side.

Gyro Y or Pitch Rate (Y-axis): The angular velocity around the Y-axis is the rate of change of the pitch angle, which

describes the vehicle's motion of tilting forward and backward.

Gyro Z or Yaw Rate (Z-axis): The angular velocity around the Z-axis is the rate of change of the yaw angle, which

describes the vehicle's motion of turning left and right.

BODY FRAME VELOCITY:

The velocities in the body frame refer to the speed and direction of an object's movement, as it relates to its own
local coordinate system.

The body frame is a reference frame that is fixed to the vehicle, and it moves and rotates with the vehicle. Its axes
are defined as follows:

Velocity X (Forward): This axis points forward, out of the vehicle's nose.

Velocity Y (Rightward): This axis points to the right, out of the vehicle's right side.

Velocity Z (Downward): This axis points downward, out of the vehicle's bottom.

Forward Velocity (Magnitude of X and Y): This is an equivalent to a ground speed channel. This is calculated from
the magnitude of INS Body Velocity X and INS Body Velocity Y. This is given by:

𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦[𝑚/𝑠] = 𝑠𝑞𝑟𝑡(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑥[𝑚/𝑠] ^ 2 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑦[𝑚/𝑠] ^ 2)

GLOBAL POSITION (LATITUDE, LONGITUDE, ALTITUDE)

The global position is with respect to a local tangent frame on the earth’s surface (using the WGS84 ellipsoid) and

is represented as decimal degrees in Latitude and Longitude.

Altitude is represented as height above the WGS84 ellipsoid and will vary from other GNSS receivers that

represent altitude as height above the Mean Sea Level (MSL).

SLIP ANGLE

The slip angle measurement is the ratio of lateral body frame velocity (Velocity Y) to longitudinal body frame

velocity (Velocity X). This can be represented as:

𝑠𝑙𝑖𝑝_𝑎𝑛𝑔𝑙𝑒[𝑟𝑎𝑑] = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑦[𝑚/𝑠] / 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑦[𝑚/𝑠])

Slip angle will only be published from the INS if the Filter State value is equal to 2 and longitudinal body frame

velocity (vX) is greater than 0.1 m/s. Otherwise the slip angle value will be set to 0.0.

TIME AND DATE

The time measurements provided by the INS are representative of the time and date in UTC (Universal Time

Coordinated). In practice, UTC lines up with the Greenwich Mean Time (GMT) zone.

The time and date will be accurate when the INS Time Valid value is equal to 1.

RACE TIME AND RACE DISTANCE

The INS will automatically start a timer and a velocity integrator that will provide distance traveled during a period

of forward movement.

The distance channel is integrated from Forward Velocity.

Without any user intervention, the INS will start this time and distance calculation module as soon as the vehicle is

traveling at a speed of 1 m/s. This module will reset as soon as the vehicle has decelerated to a speed of less than

0.8 m/s.

The user also has the option to manually initiate the timer and integration module using a CAN command which is

outlined in the 0x40 Dead Reckoning Enable / Disable section of the CAN Definitions (Input) chapter.

- The channel limits of INS Race Time are 655.35 seconds.

- The channel limits of INS Race Distance are 655.35 meters.

STATE ENUMERATIONS

The state enumerations are provided to inform the user about the quality of the estimates that the INS is

providing.

- Tracked Satellites represents the number of satellites that are being used in the solution estimate.

o In practice, this should be no less than 8 satellites when the antenna has good sky view.

- GNSS Fix Type represents the type of GNSS fix.

o In practice, you will want to see a value of 4 in normal operating conditions.

▪ 0 == No GNSS Fix

▪ 1 == Time Fix Only

▪ 2 == 2D Fix Only

▪ 3 == 3D Fix

▪ 4 == Differential Fix

- Filter State represents the state of the main on-board Kalman filter that is generating the acceleration /

velocity / position / orientation estimates.

o In practice, you will want to make sure you see a value of 2 in normal operating conditions after

the filter has converged*

▪ 0 == Not Tracking (normal at startup)

▪ 1 == Aligning (normal during the filter convergence period)

▪ 2 == Tracking (normal after filter has converged)

▪ 3 == Loss of GNSS (normal if there is a brief GNSS outage due to environmental

conditions)

- Baud Rate Enum represents the current CAN baud rate of the sensor.

o 1 == 1Mbps (default)

o 2 == 500Kbps

o 3 == 250Kbps

- Transmission Rate Enum represents the current transmitted rate of the fastest transmitted channels in

the highest priority channel group.

o 1 == 400 Hz

o 2 == 200 Hz (default)

o 3 == 100 Hz

o 4 == 50 Hz

o 5 == 25 Hz

o 6 == 10 Hz

*The INS must have a brief period of driving with a bit of straight road driving, left turns, and right turns to reach

filter convergence. In practice, this is achieved in about half of a sighting lap on a normal racing circuit.

CAN DEFINITIONS (OUTPUT):

Note: This sensor should be connected to a 1Mbps CAN bus. Since the data rate and precision is so high, the data
payload transmits roughly ~60% of the bus load of a 1Mbps bus by itself. Take note of this when integrating the
sensor onto a bus with other high bandwidth devices.

Note: As of Version 15, the transmission rate and the CAN Baud rate are user selectable using CAN configuration
commands. The data rate must be reduced from 400 Hz to AT LEAST 200Hz if the CAN Baud rate is moved from
1mbps to 500kbps.

Note: The values, units, identifiers, baud rate, and update rates are configurable at time of order. Please contact
sander@obsidianeng.com for more information.

CAN Standard CAN 2.0A (11-bit identifiers)

Bit Rate 1Mbps (default)

Byte Order Big-Endian (MoTeC “Normal”)
Note: All references in this document are Big Endian

Termination Resistor Internal hardware DIP switch on SN > 50

CAN Message Structures:

This table represents a byte-wise arrangement of the CAN messages that the INS produces.

- (msb) represents the “beginning” of the can message. This is also referred to as “most significant bit”.
- (scalar <x>) represents the scalar used to bring the message in to a floating-point representation.
- (unit <x>) represents the unit of the channel.

ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Default Rate
(hz)

0x790 yaw (msb,
scalar 1e-2,

unit deg)

yaw pitch (msb,
scalar 1e-2,

unit deg)

pitch roll (msb,
scalar 1e-2,

unit deg)

roll version serial
number

200

0x791 gyro x (msb,
scalar 1e-7,

unit rad/sec)

gyro x gyro x gyro x gyro y (msb,
scalar 1e-7,

unit rad/sec)

gyro y gyro y gyro y 200

0x792 gyro z (msb,
scalar 1e-7,

unit rad/sec)

gyro z gyro z gyro z body accel x
(msb, scalar

1e-7, unit
m/sec/sec)

body accel x body accel x body accel x 200

0x793 body accel y body accel y body accel y body accel y body accel z body accel z body accel z body accel z 200

mailto:sander@obsidianeng.com

(msb, scalar
1e-7, unit

m/sec/sec)

(msb, scalar
1e-7, unit

m/sec/sec)

0x794 latitude
(msb, scalar

1e-7, unit
decimal deg)

latitude latitude latitude longitude
(msb, scalar

1e-7, unit
decimal deg)

longitude longitude longitude 200

0x795 altitude
(msb, scalar
1e-5, unit m)

altitude altitude altitude barometric
pressure

(msb, scalar
1e-1, unit

kpa)

barometric
pressure

temp (msb,
scalar 1e-1,

unit C)

temp 200

0x796 velocity x
(msb, scalar

1e-7, unit
m/s)

velocity x velocity x velocity x velocity y
(msb, scalar

1e-7, unit
m/s)

velocity y velocity y velocity y 200

0x797 velocity z
(msb, scalar

1e-7, unit
m/s)

velocity z velocity z velocity z forward
velocity

(msb, scalar
1e-7, unit

m/s)

forward
velocity

forward
velocity

forward
velocity

200

0x798

year month day hour minute second millisecond
(msb, scalar
0, unit ms)

millisecond 200

0x799 tracked
satellites

GNSS fix
type

filter state vel uncert yaw uncert roll uncert pitch uncert time valid
state

200

0x79A sprint
distance

(msb, scalar
1e-2, unit m)

sprint
distance

sprint race
time (msb,
scalar 1e-2,

unit sec)

sprint race
time

slip angle
(msb, scalar

1e-2, unit
deg)

slip angle dead
reckoning

enable state

 200

0x79B raw accel x
(msb, scalar

1e-2, unit
m/s/s)

raw accel x raw accel y
(msb, scalar

1e-2, unit
m/s/s)

raw accel y raw accel z
(msb, scalar

1e-2, unit
m/s/s)

raw accel z transmission
rate enum

baud rate
enum

200

0x79C quaternion x
(msb, scalar

1e-4, unit
none)

quaternion x quaternion y
(msb, scalar

1e-4, unit
none)

quaternion y quaternion z
(msb, scalar

1e-4, unit
none)

quaternion z quaternion
w (msb,

scalar 1e-4,
unit none)

quaternion
w

200

0x79D 0xFA

See CAN
Input

Section

user
rotation

received flag

rotation x
(msb, scalar

1e-3, unit
radian)

rotation x rotation y
(msb, scalar

1e-3, unit
radian)

rotation y rotation z
(msb, scalar

1e-3, unit
radian)

rotation z 1

0x79E 0x14

See CAN
Input

Section

user
antenna

translation
received flag

antenna
translation x
(msb, scalar
1e-3, unit m)

antenna
translation x

antenna
translation y
(msb, scalar
1e-3, unit m)

antenna
translation y

antenna
translation z
(msb, scalar
1e-3, unit m)

antenna
translation z

1

0x79F 0x11

See CAN
Input

Section

user accel /
gyro filter

request flag

accel filter
window

gyro filter
window

 1

CAN DEFINITIONS (INPUT):

The items in this section are available for advanced users that wish to configure the sensor output to suit their
specific needs.

It is imperative that this sensor must not be installed on a bus with active traffic on the 0x006 CAN ID. This ID is
used for sensor configuration and will lead to unpredictable behavior if random traffic enables or disables some of
these toggles.

AN EXAMPLE:

The general idea behind these user inputs is that all messages that are sent from the user to the sensor will be
transmitted on the 0x006 ID. The general message structure will look like this:

ID Byte 0 Byte 1 Byte 2 Byte 3

0x006 0x06 0x66 0x10
(Parameter
selection byte)

0x00
(Parameter
toggle byte)

Generally, byte 2 (aside from the 0xFA Reference Frame Rotation) is a descriptor of which function you are trying
to access. Bytes 3 - 7 are for user entered values or toggles (on/off). In the example above, sending this message
will DISABLE (0x00) the Adaptive Filter functionality of the system and produce better orientation estimates in
some cases. If you wished to re-enable Adaptive Filter functionality, you would simply exchange the 0x00 in byte 3
for an 0x01. This will ENABLE (0x01) the Adaptive Filter.

This area will be under constant update and development as new user input functions are added. The following
will describe all the current user configuration parameters and their uses.

0X10 (ADAPTIVE FILTERING / ENABLED BY DEFAULT)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x10 0x00 ==
Disabled

0x01 == Enabled

Toggle

This setting will only be needed in the most extreme vibration conditions. The Adaptive Filtering that is done on-
board the sensor is used to make the orientation estimates in most cases more reliable. However, it can have

adverse effects on the orientation data in some cases. This allows the user to disable it if they wish. In general, this
field should be left alone unless instructed to change this by Obsidian Group.

IMPORTANT: This setting will not persist after a power cycle unless you have used the 0x66 (WRITE SETTINGS TO
MEMORY) function.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X11 (ACCELEROMETER / GYROSCOPE DATA OUTPUT FILTER / DISABLED BY DEFAULT)

ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Type

0x006 0x06 0x66 0x11 0x01 ==
Enabled

0x00 ==
Disabled

Accel Filter
Window
Size

Example:
0x20 ==
Window
Size of 32

Gyro Filter
Window
Size

Example:
0x10 ==
Window
Size of 16

Toggle +
8-bit
unsigned
ints

The accelerometer data can sometimes be hard to view in the absolute sense due to the noise in the signal data. If
the user wishes to apply a moving average filter (boxcar) across the data, the sensor can do this filtering on-board.
The filter window is also configurable by the user.

The maximum filter window size is 120 samples. The raw IMU rate of the sensor is 400hz. If a window size of 40 is
used, this would be the rough equivalent of a 10hz moving average filter. In practice, I would not suggest
exceeding a window size of 20-30. If values are too high, it may result in over-filtering.

If the filter is disabled with the 0x00 flag on byte 3, the sensor will ignore any data from bytes 4 - 7.

IMPORTANT: Sending these filter parameters will cause a brief delay in transmitted data while the filter is enabled.

IMPORTANT: These parameters will persist in the future until the filter parameters are disabled by sending this
message again and setting byte 3 to 0x00 (Disabled).

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X12 (AHRS CONTROL / ENABLED BY DEFAULT)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x12 0x01 == Enabled

Toggle

0x02 ==
Disabled

AHRS stands for Attitude and Heading Reference System. This system attempts to use the magnetometer in the
sensor to estimate the current heading of the vehicle even when it is stationary before the system has achieved a
GNSS fix. In practice, the magnetometer can be confused by noisy environments and there are times where
disabling this system will yield quicker filter convergence times.

This module can only be disabled after it has been enabled.

IMPORTANT: This setting will not persist after a power cycle unless you have used the 0x66 (WRITE SETTINGS TO
MEMORY) function.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X13 (ADAPTIVE FILTER PARAMETER TUNING / PRE-CONFIGURED BY DEFAULT)

ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Type

0x006 0x06 0x66 0x13 atX
(bits 0 – 3)

atY
(bits 4 – 7)

atZ
(bits 0 – 3)

afX
(bits 4 – 7)

afY
(bits 0 – 3)

afZ
(bits 4 – 7)

4-bit
unsigned
ints

The adaptive filter parameter tuning allows the end user to adjust some of the pre-filtering that is done on the raw
signaling before the data passes through the EKF. In general, this field should be left alone unless instructed to
change this by Obsidian Group.

IMPORTANT: This setting will not persist after a power cycle unless you have used the 0x66 (WRITE SETTINGS TO
MEMORY) function.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X14 (IMU TO ANTENNA LEVER ARM TRANSLATION / PRE-CONFIGURED TO 0.75M ABOVE IMU)

ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Type

0x006 0x06 0x66 0x14 Translation
X (xT)

(Example:

Translation
Y (yT)

(Example:

Translation
Z (zT)

8-bit
signed int
scaled by
10

0xF3 ==
-1.3m)

0xE6 ==
-2.6m)

(Example:
0x10 ==
1.6m)

The IMU to Antenna Lever Arm Translation is an important aspect of any IMU + GNSS system. This translation
informs the EKF the correlation of movement that the antenna might see to the movement that the IMU observes.
It is, by default, configured such that the GNSS antenna will be mounted 0.75m directly above the IMU. This
default configuration assumes no lateral translation. If the installation of the antenna requires that the translation
be something other than this default, this must be programmed into the INS using this input.

Regarding the example above:

The coordinate frame of the INS uses a “Forward, Right, Down” convention which means that the X axis is positive
in the forward direction, the Y axis is positive in the right direction, and the Z axis is positive in the down direction.
If we use the values in the example above, that will place the antenna 1.3 meters behind the INS, 2.6 meters to the
left of the INS, and 1.6 meters below the INS. Obviously this is an implausible example (being that you wouldn’t
generally want to mount the antenna below the INS!).

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X20 (TRANSMISSION RATE CONTROL)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x20 0x01 == 400Hz
0x02 == 200Hz
0x03 == 100Hz
0x04 == 50Hz
0x05 == 25Hz
0x06 == 10Hz

Toggle

The transmission rate control directly controls the rate at which CAN messages are published from the sensor. This
does not have any impact on the calculation speed of the internal EKF.

You will only be able to change the transmission rate once per power cycle. This is to make sure that the sensor
does not enter any unpredictable behavior if there are many rate changes requested at any one time.

IMPORTANT: This setting will be written to the internal memory of the device after it has been set. This means that
at the next power up, it will maintain the transmission rate that you have set.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X21 (CAN BAUD RATE CONTROL)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x21 0x01 == 1Mbps

0x02 ==
500Kbps

0x03 ==
250Kbps

Toggle

This toggle will control the baud rate of the CAN bus. Once this command has been set, it will take effect at the
next power cycle.

An Example: If the sensor is up and running on a 1mbps bus, and you send a CAN command of the following:

ID Byte 0 Byte 1 Byte 2 Byte 3

0x006 0x06 0x66 0x21 0x02

This will force the device to start up at the next power cycle in a 500kbps mode. IT IS IMPERATIVE that you keep
in mind that it is not possible to use this sensor at 400 Hz mode on a 500kbps CAN bus. You must reduce the
transmission rate (see directly above) to a minimum of 200 Hz.

IMPORTANT: This setting will be written to the internal memory of the device after it has been set. This means that
at the next power up, it will maintain the baud rate that you have set.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X30 (GPS SIMULATION OPTION)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x30 0x00 ==
Disabled

0x01 == MoTeC
GPS Simulation
(Default)

0x02 == Emtron
GPS Simulation

Toggle

This will toggle the various GPS simulation options to directly integrate with devices from MoTeC or Emtron Pty
Ltd. If enabled, the sensor will generate data in the format that these devices are expecting to receive from their
own GPS receiver units.

MoTeC M1 GPS Receive should be configured as follows:

Emtron GPS Receive should be configured as follows:

IMPORTANT: This setting will be written to the internal memory of the device after it has been set. This means that
at the next power up, it will maintain the GPS simulation option that you have set.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

0X40 (DEAD RECKONING ENABLE / DISABLE)

ID Byte 0 Byte 1 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x40 0x00 ==
Disabled

0x01 == Enabled

Toggle

This field can enable the calculation of the Race Distance (m) and Race Time (s) channels that are transmitted by
the INS on CAN ID 0x79A. This toggle allows the end user to start the dead reckoning process and enable the Race
Distance (m) and Race Time (s) channels. An intuitive example of this use is to set byte 3 to 0x01 when a drag race
car has let off the staging brake (or transmission brake, in the case of a car with a torque converter).

IMPORTANT: By default, the INS is set to start the dead reckoning process when the vehicle’s forward velocity is
greater than 0.75 m/s. You can preempt this by setting byte 3 to 0x01 before the vehicle has reached 0.75 m/s
forward velocity.

0X66 (WRITE SETTINGS TO MEM ORY)

NOTE: USE THIS ONLY IF YOU ARE SURE THAT YOUR SETTINGS ARE VALID.

ID Byte 0 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x66 Toggle

This field will allow the end user to write the previously configured settings to the non-volatile memory (NVM) of
the sensor. Once you have sent this command using the bytes listed above, the settings will be written to the
sensor, and they will persist after a power cycle.

IMPORTANT: Sending this command will result in a brief delay of transmitted data from the INS.

0X67 (WRITE DEFAULTS TO MEMORY)

ID Byte 0 Byte 2 Byte 3 Type

0x006 0x06 0x66 0x67 Toggle

This field will allow the end user to recover the default settings that were configured on the sensor at time of
shipment. If there is any confusion about settings or strange behavior of the sensor, this command will reset all of
the parameters that could have been adjusted back to their defaults.

IMPORTANT: Sending this command will result in a brief delay of transmitted data from the INS.

0XFA (REFERENCE FRAME ROTATION)

NOTE: IF YOU ARE APPLYING MORE THAN ONE ROTATION, BE SURE TO UNDERSTAND THE ORDER OF

ROTATIONS. THE ORDER OF ROTATIONS IS [X (ROLL), Y (PITCH), Z (YAW)]

ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Type

0x006 0xFA Roll (X)
Rotation
(msb)

Roll (X)
Rotation

Pitch (Y)
Rotation
(msb)

Pitch (Y)
Rotation

Yaw (Z)
Rotation
(msb)

Yaw (Z)
Rotation

Radian
Int scaled
by 1e3

This field will allow the end user to rotate the body frame to align with the vehicle frame to cope with

misalignments in the installation of the sensor in the vehicle. Practically speaking, this will be needed if the sensor

is not mounted in the car so that the X-axis is pointing precisely forward, and that the Z-axis is pointing precisely

down.

The rotation values for X, Y and Z are designed to be sent to the INS as radians that are converted to integers and
scaled by 1000.0. This allows for a minimum and maximum rotation of -32.768 and 32.767 radians respectively.

An example:

Say you need to correct the misalignment in the Z axis (Yaw) by a factor of 3 degrees:

- Convert 3 degrees to radians by multiplying by pi (3.14159) and multiplying by 180. This will result in
0.5236 radian.

- Multiply 0.5236 radians by 1000. This will result in 52.36.
- Convert 52.36 to an integer. This will result in 52.
- Convert 52 to a hexadecimal number. This will result in 0x34.
- The resulting data you would send to the INS would be:

o [id / b0 / b1 / b2 / b3 / b4 / b5 / b6 / b7]
o [0x006 / 0xFA / 0x00 / 0x00 / 0x00 / 0x00 / 0x00 / 0x34 / 0x00]

Now let’s say you need to correct the misalignment in the Z axis (Yaw) by a factor of -2 degrees:

- Convert -2 degrees to radians by multiplying by pi (3.14159) and multiplying by 180. This will result in -
0.034 radians.

- Multiply -0.034 radians by 1000. This will result in -34.90 radians.
- Convert -34.90 to an integer. This will result in -34, however, you can round up to -35.
- Convert -35 to a hexadecimal number.

o Subtract -35 from 65536. This will result in 65501.
o Convert 65501 to a hexadecimal number. This will result in 0xFFDD.

- The resulting data you would send to the INS would be:
o [id / b0 / b1 / b2 / b3 / b4 / b5 / b6 / b7]
o [0x006 / 0xFA / 0x00 / 0x00 / 0x00 / 0x00 / 0xFF / 0xDD]

IMPORTANT: Sending this command will result in a brief delay of transmitted data from the INS.

IMPORTANT: This rotation will be written to the non-volatile memory of the INS and as such will only need to be
set once after installation.

IMPORTANT: This can only be set once per power cycle. This is to avoid spamming or incorrect configuration
causing unknown behavior.

